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Abstract: Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to
improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring
across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with
gadolinium release and tissue deposition that may cause short- and long-term toxicity in several
organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing
prevalence of chronic kidney disease worldwide and that most of the complications following GBCA
exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially
renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of
toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs.
In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of
toxicity was performed.

Keywords: gadolinium; toxicity mechanisms; gadolinium-based contrast agents; nephrotoxicity;
magnetic resonance imaging

1. Introduction

The paramagnetic properties of gadolinium (Gd (III)) has made it a crucial imaging aid
tool for medical diagnosis and for treatment monitoring, across multiple clinical settings.

In the 1960s, the toxicity of Gd (III) in the salt form was reported in animal studies, lim-
iting its use [1]. The development of the first formulations of Gd (III) stabilized by chelating
agents, in the late 1980s, renewed the applicability of Gd (III) as a contrast agent [1].

Contrast agents composed of chelated Gd (III), commonly referred to gadolinium-
based contrast agents (GBCAs), have been widely used in magnetic resonance imaging
(MRI) for over three decades, supporting the diagnosis of tumors, central nervous sys-
tem diseases, vascular diseases, bone marrow disorders, sclerosis, and cerebrovascular
events [2], among other clinical conditions. Furthermore, recently, its potential applicability
in the theranostic agents field has also been investigated [3,4]. The design of GBCAs must
consider that the release of Gd (III) from chelates should be low enough to be safe; thus, Gd
(III) must attach firmly to a high affinity ligand to form a safe GBCA. By chelating Gd (III),
its toxicity is reduced to a safe level, while maintaining the paramagnetic properties, which
will increase the sensitivity and specificity of MRI diagnostic.
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Considering the chemical structure of the chelating molecule, GBCAs can be classified
as linear or macrocyclic, depending on whether or not they have an open or an enclosing
structure, respectively (Figure 1). Depending on their charge, they can be ionic, like the
acidic GBCA, or non-ionic, like the chelating agents with amide or alcohol groups. Linear
complexes are flexible open chains that do not bind robustly to Gd (III), while macrocyclic
GBCAs, with pre-arranged rigid rings, present almost the ideal size to trap the ion, offering
a stronger linkage to Gd (III). The development of macrocyclic chelates was prompted by
the low stability of linear GBCAs. Indeed, Gd (III) dissociates more quickly and easily
from linear chelates, leading to higher circulating levels and increased tissue uptake of
free Gd (III), which may entail long-term disturbances in multiple organs [5]. Studies with
fibroblasts and macrophages showed that, following endosomal internalization into living
cells, acyclic GBCAs are degraded much more rapidly than macrocyclic chelates [6].
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Accumulation of Gd (III) ion has been reported in kidney [7,8], brain [9], liver [10],
skin [11], and bone tissue [12]. Animal studies have shown that the amounts of Gd (III)
retained in the organs are higher for linear GBCAs than for those with a macrocyclic
structure [13–15]. In postmortem studies of patients who died from nephrogenic systemic
fibrosis (NSF), a clinical complication that can be observed in subjects with compromised
renal function, after exposure(s) to GBCAs [7], Gd (III) was found in all analyzed tissues,
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showing very high levels in the kidney, heart, and blood vessels [16]. The long-term
retention of Gd (III) raises concerns about the safety of GBCAs, once the mobilization of
such deposits may result in adverse events, with variable onset. A study conducted in
an aquatic environment suggested that the chelating structure of the contrast agent may
affect cell growth, also raising some concerns about the safety of the ligand [17]. Most of
the NSF reported cases were associated with the administration of non-ionic linear agents,
such as gadodiamide and gadoversetamide, although some NSF cases have also been
associated with gadopentetic acid, a linear ionic agent [18]; with macrocyclic GBCAs, there
are less reported cases of NSF, and most of them are in gadolinium-exposed patients with
renal insufficiency [19–22].

Reports of NSF occurrence in patients with advanced kidney disease exposed to
GBCAs strengthened the concern on their nephrotoxicity [7,19–22]. A slower elimination
of Gd (III), due to kidney dysfunction, increases the potential for Gd (III) accumulation in
the kidney and other tissues [23]. Accumulation of Gd (III) in the kidney, as well as in other
organs, has also been reported in individuals without renal dysfunction, particularly in
those submitted to repeated administrations of GBCAs [24].

Understanding the pathways involved in the toxicity of Gd (III) might help to clarify
the clinical significance of its renal retention, allowing a more accurate assessment of the
risks associated with GBCAs use. This review aims to identify, gather, and summarize the
current scientific data available on Gd (III) and/or GBCAs mechanisms of toxicity.

2. Gd (III) Mechanisms of Toxicity

To understand the cellular and molecular mechanisms of action underlying the toxic
effects of Gd (III) and/or GBCAs, we performed a bibliographic search, considering in vitro
and in vivo mechanistic studies, in the databases PubMed, Scopus, and Web of Science.
Keywords were specifically used for each database in order to retrieve all studies containing
information on Gd (III) or GBCA exposure. From this search, only non-human experimental
mechanistic studies were included in this review.

Table 1 summarizes, chronologically and alphabetically (first author’s surname), the
studies for Gd (III) mechanisms of toxicity deemed relevant for the purpose of this review.

Table 1. In vitro and in vivo studies concerning gadolinium mechanisms of toxicity.

Reference Study Design Main Findings

Akhtar et al., 2022 [25] Human monocytes (THP-1 cell line) exposed
to nanoparticles (NPs) of CeO2 or Gd2O3

Gd2O3 NPs showed increased cytotoxic,
pro-inflammatory (↑IL-1β and TNFα), and oxidative
(↑ROS and TBARS, ↓GSH) potential, compared to
CeO2 NPs; cell death induced by Gd2O3 NPs appears
as apoptosis-independent (no effect on Bax-Bcl2 or
caspase 3 activity), contrarily to CeO2 NPs

Ariyani et al., 2022 [26]

Rat glioma cells (C6 cell line), human
astrocytoma cells (U87MG cell line), and
primary cultures of mouse cerebral cortex
astrocytes, exposed to Omniscan™
(gadodiamide), Magnescope® (gadoteric
acid), Magnevist® (gadopentetic acid), or
Gadovist® (gadobutrol)

All GBCAs acted via integrin αvβ3, leading to
increased astrocytes migration, focal adhesion, and
F-actin rearrangement, through activation of
FAK/ERK1/2/Akt and Rho family of GTPases
signaling pathways

Chanana et al., 2022 [27]

Mouse peritoneal macrophages isolated from
C57BL/6 (H-2b) mice and murine leukemia
transformed mouse macrophages (RAW
264.7 cell line) exposed to Dotarem®

(gadoteric acid) in the presence of a static
magnetic field gradient

Gadoteric acid appeared to affect actin
polymerization, leading to macrophage elongation
and relocation of organelles; enhanced
pro-inflammatory M1 phenotype (↑iNOS and CD80)
and decreased anti-inflammatory M2 phenotype
(↓FcεRI); the magnetic field gradient had an
opposite effect
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Table 1. Cont.

Reference Study Design Main Findings

Cobanoglu 2022 [28]
Human peripheral blood lymphocytes
exposed to Dotarem® (gadoteric acid) and
OptiMARK® (gadoversetamide)

Gadoversetamide, but not gadoteric acid, showed
genotoxic and cytotoxic potential (↑frequency of
micronuclei, nucleoplasmic bridges and nuclear
buds, ↓cytostasis)

Nakamura et al., 2022 [29]

BALB/c male mice treated with a single
administration of Omniscan™
(gadodiamide), Gadovist® (gadobutrol), or
Gd (III) in the form of Gd(NO3)3 or GdCl3

Tissue deposition of gadolinium varied with the
chemical forms tested—higher levels for Gd(NO3)3,
spleen enlargement and iron deposition for Gd
(III)-treated mice

Tsai et al., 2022 [30] Human keratinocytes (HaCaT cell line)
exposed to gadodiamide

Apoptotic cell death (↑caspase 3 activity, ↓Bcl-2,
↑Bax) and autophagic activation (↑autophagic
vacuoles and acidic lysosomes); autophagy
potentiated apoptotic cell death

Uosef et al., 2022 [31] Mouse macrophages treated with Dotarem®

(gadoteric acid)

Macrophages retained Gd (III) for at least 7 days
after exposure; this retention downregulated the
expression of RhoA, mTORC1, and mTORC2
proteins, and dysregulated the expression level of
organelle markers

Algieri et al., 2021 [32] Mitochondrial (MT) fractions from swine
hearts (Susscrofa domesticus) exposed to GdCl3

GdCl3 inhibited both MT Ca2+- and Mg2+-activated
F1FO-ATPase and desensitized the permeability
transition pore to Ca2+ by binding to F1

Baykara et al., 2021 [33]
Mouse hypothalamic neurons (GT1-7 cell
line) treated with Omniscan™ (gadodiamide)
or Dotarem® (gadoteric acid)

The amount of gadolinium released from
gadodiamide was higher (versus gadoteric acid),
leading to a higher impact in Ca2+ signaling

Erdoğan et al., 2021 [34]

Human neuroblastoma cells (SH-SY5Y cell
line) exposed to Dotarem® (gadoteric acid),
Gadovist® (gadobutrol), Omniscan™
(gadodiamide), Primovist® (gadoxectic acid),
Magnevist® (gadopentetic acid), or
OptiMARK™ (gadoversetamide)

Both linear and macrocyclic GBCAs triggered
neuronal cell death through activation of apoptosis
(↑Bax/Bcl-2 ratio); neurotoxicity was more
prominent in cells exposed to linear GBCAs

Kartamihardja et al.,
2021 [35]

Renal failure mouse model (kidney
electrocoagulation) exposed for three weeks
to Omniscan™ (gadodiamide) and
Magnevist® (gadopentetic acid), three times
per week

Gadodiamide showed higher skin gadolinium
retention than gadopentetic acid, and more
prominent pro-fibrotic potential (↑Collagen 1α,
CTGF, TGFβ, αSMA, and IL-6); both GBCAs,
especially gadodiamide, increased skin infiltration
of CD3+ T cells and CD68+ macrophages, and (skin)
expression and (serum) activity of
neutrophil elastase

Kartamihardja et al.,
2021 [36]

Primary mouse pups’ cerebellar cultures
exposed to Magnevist® (gadopentetic acid)
or Gadovist® (gadobutrol), in the presence or
absence of iron (II)

Both GBCAs augmented dendrite arborization; iron
(II) potentiated this effect only with gadopentetic acid

Kong et al., 2021 [37]

ICR female mice treated with repeated
administrations of Magnevist® (gadopentetic
acid), Dotarem® (gadoteric acid), Omniscan™
(gadodiamide), or Gadavist® (gadobutrol)
for 3–5 weeks, followed by a recovery period
of 1–5 weeks

Gadodiamide caused vacuolar changes in renal
tubular epithelium; linear GBCAs increased
leukocyte count after 5 weeks of exposure and
induced higher gadolinium tissue deposition
(cerebellum, liver, kidney, femur, skin, and
peripheral nerve) compared to macrocyclic GBCAs
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Table 1. Cont.

Reference Study Design Main Findings

Reis Sousa et al., 2021 [38] Human proximal tubular cells (HK-2 cell
line) exposed to GdCl3

GdCl3 induced disruption of oxidative status (↓TAS
and GSH, ↑GSSG and NRF2), MT dysfunction
(↑Ca2+, ↓∆Ψm and ATP), cell death by apoptosis
(↑caspase 3, ↓Bcl-2), switching to necrosis (↑LDH
leakage) at higher levels, and autophagic activation
(↑p62); disturbance of lipid metabolism (↑ACACA,
CPT1A, and neutral red uptake) increased
expression of modulators of inflammation, hypoxia,
and fibrosis (↑NFκB, IL-6 and 1β, TGFβ, OPN, and
HIF-1α) at low to subtoxic concentrations

Solmaz et al., 2021 [39]

Male Sprague Dawley rats treated repeatedly
for 3 weeks with Gadovist® (gadobutrol),
Clariscan® (gadoteric acid), and Dotarem®

(gadoteric acid); evaluation after a recovery
period of 1 week

Repeated exposure to GBCAs caused hippocampal
gliosis and increased oxidative stress and
inflammation in the brain (↑LPO and TNFα, ↓SOD
activity); neurotoxicity of gadobutrol was relatively
lower than that of gadoteric acid

Tsai et al., 2021 [40] Human fetal normal glial cells (SVG P12 cell
line) exposed to Omniscan™ (gadodiamide)

Apoptotic cell death (↓Bcl-2 and -XL, ↑Bax and BAD,
↑cytochrome c, Apaf-1, and cleaved-caspase 3 and 9)
and autophagic activation (↑autophagic vacuoles
and acid lysosomes, ↑LC3-I/II turnover, beclin-1,
autophagy-related proteins -5, and -14); autophagy
potentiated cell death

Xie et al., 2021 [41] Healthy mice treated with repeated doses of
γ-Fe2O3 NPs and gadopentetic acid (Gd-DTPA)

Proinflammatory responses elicited by Gd-DTPA
were stronger than for γ-Fe2O3 NPs (↑IL-1β, -6, -18,
TNFα, CRP, and ferritin)

Akhtar et al., 2020 [42] Human umbilical vein endothelial cells
(HUVEC cell line) exposed to Gd2O3 NPs

Gd2O3 NPs acted as inducer of oxidative stress
(↑TBARS, ROS and LPO, ↓GSH), MT dysfunction
(↑MT membrane potential), and autophagy (↑acidic
lysosomes and autophagic vacuoles), and revealed
apoptotic (↑caspase 3 and annexinV) and
necrotic potentials

Bloomer et al., 2020 [43]
Hepatic macrophages of young (6 months)
and aged (24 months) Fischer 344 rats
evaluated 2 days after exposure to GdCl3

In aged animals, GdCl3 shifted liver macrophage
polarization towards the anti-inflammatory M2
phenotype (↓iNOS+ cells).

Nong et al., 2020 [44] Mouse embryo fibroblasts (NIH-3T3 cell line)
exposed to gadodiamide or GdCl3

Inhibition of cell growth, more pronounced with
GdCl3; tubulin filaments appeared as potential
gadolinium-binding proteins, which might lead to
impaired microtubule assembling

Siew et al., 2020 [45] Chinese hamster lung fibroblasts (V79-4 cell
line) exposed to GdCl3

Cell death and no significant DNA damage,
although showing clastogenic potential
(↑micronuclei frequency)

Supawat et al., 2020 [46]
K562 cancer cells and red blood cells exposed
to gadoteric acid, gadopentetic acid, or
gadobenic acid

Gadoteric acid and gadobenic acid decreased cell
viability in K562 cancer cells in a
concentration-dependent manner

Takanezawa et al., 2020 [47]

Human embryonic kidney cells (HEK293 cell
line), lung carcinoma epithelial cells (A549
cell line), neuroblastoma cells (SH-SY5Y cell
line), and mouse embryonic fibroblasts (MEF
cell line) exposed to Gd(NO3)3 or GdCl3

Gd (III) reduced cell viability in all cell lines,
triggered ER stress, and activated autophagy
(↑LC3-II), which appears as cytoprotective against
Gd (III) toxicity

Akhtar et al., 2019 [48] Human breast cancer cells (MCF-7 cell line)
exposed to Gd2O3 NPs or to GdCl3

Gd2O3 NPs and GdCl3 induced cytotoxicity (↑LDH
leakage), oxidative damage (↑TBARS, ROS, GSH),
and autophagic activation (↑autophagic vacuoles
and acidic lysosomes); cell death was
apoptosis-dependent (↑Bax/Bcl2 ratio) for GdCl3
and apoptosis-independent for Gd2O3 NPs
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Table 1. Cont.

Reference Study Design Main Findings

Baykara et al., 2019 [49]

Primary cultures of dorsal root ganglion
neuron exposed to gadolinium, Omniscan™
(gadodiamide), Dotarem® (gadoteric acid),
Gadovist® (gadobutrol), or MultiHance®

(gadobenic acid)

Ca2+ levels within neurons decreased, as ionic
currents were blocked by Gd (III) released from the
chelates, in accordance with their stability
(gadobutrol < gadobenic acid ≈ gadodiamide;
no effect from gadoteric acid)

Beyazal Celiker et al.,
2019 [50]

Male Sprague Dawley rats treated with
repeated administrations of Dotarem®

(gadoteric acid) or Omniscan™
(gadodiamide) for 5 weeks; evaluation after a
recovery period of 5 weeks

Gadodiamide promoted higher kidney interstitial
fibrosis, amyloid deposits, and vasocongestion,
while gadoteric acid led to greater renal leukocytic
infiltration and tubules atrophy; both GBCAs
increased caspase 3 expression

Bower et al., 2019 [51]

Differentiated human neuroblastoma cells
(SH-SY5Y cell line) exposed to Omniscan™
(gadodiamide), Magnevist® (gadopentetic
acid), Primovist® (gadoxetic acid),
MultiHance® (gadobenic acid), Dotarem®

(gadoteric acid), Gadovist® (gadobutrol), or
ProHance® (gadoteridol)

GBCAs triggered cell death by apoptosis, with
reduction of the ∆Ψm and of the oxidative
respiratory function; disturbances were dependent
on the stability of the GBCA, being more
pronounced for linear GBCAs

Do et al., 2019 [52]
Female C57 black mice exposed to repeated
administrations of Omniscan™
(gadodiamide) for 4 weeks

Impaired renal function, associated with myeloid
cell infiltration and renal fibrosis (↑fibronectin,
CCR2, and αSMA); metabolic dysfunction was also
induced, with particular impact on renal lipid
metabolism; obesity appeared to amplify
these effects

Do et al., 2019 [53]
Female C57 black mice exposed to repeated
administrations of Omniscan™
(gadodiamide) for 8 weeks

Skin fibrosis mediated by CCR2 (↑fibronectin,
collagen I, CCR2, CCL2)

Pan et al., 2019 [54] Human embryonic kidney cells (HEK293 cell
line) treated with GdCl3

Proliferation of HEK293 cells (increased DNA
synthesis and activation of EGFR/Akt/ERK
signaling pathways; pro-fibrotic/pro-inflammatory
changes (↑TGFβ and its receptor, TNFα, TIMP-1,
and integrins αV and β1))

Tsai et al., 2019 [55] Rat glioma C6 cells treated with GdCl3
Cell death by apoptosis (↑caspases 3, 8, and 9
activity, ROS and Ca2+, ↓∆Ψm); down-regulation of
the mitogen-activated protein kinases pathway

Wang et al., 2019 [56]
SJL/J mice, healthy or with autoimmune
encephalomyelitis, exposed to repeated
administrations of gadopentetic acid for 4 days

Ongoing inflammation favored retention of Gd (III)
in the brain tissue

Weng et al., 2019 [57]

Adenine-induced renal failure rat model
treated with repeated administrations of
gadodiamide for 5 days; human normal liver
cells (L02 cell line), human embryonic kidney
cells (HEK293 cell line), mouse fibroblasts
(3T6 cell line), and mouse macrophages
(RAW264.7 cell line), exposed to gadodiamide

Skin fibrosis, oxidative stress, and inflammation
(↑αSMA and TGFβ1, heme oxygenase-1, NOX4,
CCL2, IL-1β and TNFα) in renal failure rats; in vitro
exposure of macrophages showed upregulation of
markers of fibrosis and inflammation (↑αSMA and
TGFβ1, IL-1β and TNFα), and of fibrosis (↑αSMA)
in fibroblast exposed to the supernatant of exposed
macrophages; at the highest concentrations,
promoted cell death in normal liver and kidney cells
and in macrophages

Beyazal Celiker et al.,
2018 [58]

Male Sprague Dawley rats treated with
repeated administrations of Dotarem®

(gadoteric acid) or Omniscan™
(gadodiamide) for 5 weeks

Both showed toxic effects on testis tissue, inducing
apoptosis (↑caspase 3 and Ca2+) and reducing
testosterone levels
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Table 1. Cont.

Reference Study Design Main Findings

Fattah et al., 2018 [59]

Human breast cancer (MCF-7 cell line),
mammary epithelial (Hs 578T cell line), and
epithelial-like triple-negative breast cancer
cells (MDA-MB-231 cell line) exposed to
gadopentetic acid

Triggered cell proliferation of MCF-7 cells at low
concentrations and cell death, as well as cell
migration, at higher levels

Friebe et al., 2018 [60]

Lymphocytes from healthy donors incubated
with Gadovist® (gadobutrol), Dotarem®

(gadoteric acid), Omniscan™ (gadodiamide),
Magnograf® (gadopentetic acid), or
Primovist® (gadoxetic acid), either alone or
combined with ultra-high-field 7-T magnetic
resonance imaging exposure

Only linear GBCAs showed a dose-dependent
increase in apoptosis (↑annexinV+ cells) and a
decrease in DNA synthesis, independent of
additional 7-T magnetic resonance imaging
co-exposure

Mercantepe et al., 2018 [10]
Male Sprague Dawley rats exposed
repeatedly to Omniscan™ (gadodiamide) or
Dotarem® (gadoteric acid) for 20 days

Both triggered hepatocellular necrosis, portal
inflammation, and apoptosis (↑caspase 3);
no changes occurred in total
antioxidant/oxidant capacity

Weng et al., 2018 [61]

Macrophages exposed to low levels of
Omniscan® (gadodiamide), Primovist®

(gadoxetic acid), Magnevist® (gadopentetic
acid), Gadovist® (gadobutrol), or GdCl3

GdCl3 and GBCAs had no effect on cell viability, but
promoted MT dysfunction and oxidative stress
(↓∆Ψm, and ↑ROS); GBCAs also triggered an
inflammatory response (↑nitrate/nitrite,
prostaglandin E2, IL-6, ↓IL-10)

Alarifi et al., 2017 [62] Human neuroblastoma cells (SH-SY5Y cell
line) exposed to Gd2O3 NPs

Cell death by apoptosis (↑caspase 3, ↓∆Ψm and
Bcl2/Bax ratio), DNA damage, and oxidative stress
(↑ROS, LPO, SOD and catalase, ↓GSH)

Knoepp et al., 2017 [63]

Xenopus laevis oocytes heterologously
expressing human epithelial Na+-channels
exposed to GdCl3, Magnevist® (gadopentetic
acid), Dotarem® (gadoteric acid), or
their chelates

GdCl3 triggered changes in epithelial
Na+-channels-mediated currents and appeared to
act on at least two binding sites; Gd (III) released
from the linear GBCAs, but not from gadoteric acid,
was sufficient to interfere with the channels’ activity

Nagy et al., 2017 [64]

Human skin keratinocytes (HaCaT cell line),
human limbal stem cells (HuLi cell line),
colorectal adenocarcinoma (CaCO2 cell line),
murine squamous carcinoma (SCC cell line),
and Indian muntjac cells (IM cell line)
exposed to GdCl3

Loss of cellular motility, premature chromatin
condensation, and highly condensed chromatin,
consistent with apoptotic cell death

Ozawa et al., 2016 [65] Normal human dermis-derived fibroblasts
incubated with Omniscan™ (gadodiamide)

Increased fibroblast growth, with increased DNA
synthesis

Tsai et al., 2016 [66] Human osteosarcoma cells (U-2 OS cell line)
exposed to GdCl3

Apoptotic cell death mediated by death receptors,
mitochondria, and ER stress (↑caspases 3, 4, 8, and
9 activity, Fas and its ligand, cytochrome c, Apaf-1,
GADD153, GRP78, Ca2+, ↓∆Ψm)

Bose et al., 2015 [67]

Male BALB/c mice with a two-step surgical
5/6 nephrectomy, exposed to repeated
administrations of Omniscan™
(gadodiamide), with or without deferiprone,
for 22 days; evaluations after 16 weeks;
human peripheral blood mononuclear cells
exposed to Omniscan™ (gadodiamide), with
or without deferiprone

Renal failure mice exposed to gadodiamide
developed nephrogenic systemic fibrosis; infiltration
of ferroportin-expressing fibrocyte-like cells and iron
accumulation in the skin; these effects were less
pronounced in gadodiamide plus
deferiprone-treated group; gadodiamide also
prompted release of catalytic iron in vitro

Chen et al., 2015 [68] BALB/c mice exposed to a single dose of
gadopentetic acid for 24 h

Reduced circulating leukocytes and triggered an
inflammatory response (↑IL-6 and TNFα); it also
induced damage in the lungs, kidneys, and spleen
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Schmidt-Lauber et al.,
2015 [69]

Bone marrow derived macrophages from
C57BL/6, Nlrp3−/−, and Asc−/− mice
incubated with Omniscan™ (gadodiamide),
gadopentetic acid, or GdCl3; male C57BL/6
and Nlrp3−/− mice intraperitoneally injected
with a single dose of gadopentetic acid

Free Gd (III) and GBCAs induced the secretion of
IL-1β in wild type mice-derived macrophages,
through the activation of the inflammasome;
Gd-containing compounds exhibited higher
potential to activate anti-inflammatory M2
macrophages; the inflammatory response in vivo
was also dependent on engagement of
the inflammasome

Cho et al., 2014 [70] Human lymphocytes exposed to GdCl3

Genotoxicity (↑micronuclei frequency and DNA
damage), apoptotic cell death, and oxidative stress
(↑ROS); extremely low-frequency electromagnetic
fields potentiated these effects

Do et al., 2014 [11]

Human foreskin fibroblasts incubated with
Omniscan™ (gadodiamide) or ProHance®

(gadoteridol); Female Fisher 344 rats with
renal failure (5/6 nephrectomy) exposed to
repeated doses of the GBCA for 4 weeks

In vitro, GBCAs triggered fibrosis (↑fibronectin,
TGFβ, and αSMA); in vivo, gadodiamide led to
greater skin fibrosis (↑fibronectin) and dermal
cellularity than gadoteridol; gadoteridol induced
higher expression of skin TGFβ and fibronectin
accumulation in the liver; both agents led to
proximal renal tubule vacuolization

Shen et al., 2014 [71] Mouse embryo fibroblasts (NIH3T3 cell line)
exposed to GdCl3

Cell proliferation via Rac, PI3K/Akt, and
integrin-mediated signaling pathways

Wermuth and Jimenez
2014 [72]

Human dermal fibroblasts incubated with
supernatants of human peripheral blood
mononuclear cells treated with gadopentetic
acid, Omiscan™ (gadodiamide), Dotarem®

(gadoteric acid), MultiHance® (gadobenic
acid), ProHance® (gadoteridol), OptiMARK®

(gadoversetamide), or non-chelated Gd (III)

GBCA exposure led to variable expressions of
profibrotic and proinflammatory cytokines in
monocytes, more pronounced for linear agents
(↑IL-4, -6, -13, TGFβ, and VEGF); overall increase in
gene expression of cytokines, chemokines, genes
involved in the activation of NFκB and
interferon-responsive genes was also observed in
Gd-treated monocytes; fibroblast showed a
profibrotic phenotype (↑types I and III collagen,
fibronectin, and αSMA)

Swaminathan et al.,
2013 [73]

Human peripheral blood mononuclear cells
exposed to Omniscan™ (gadodiamide); skin
biopsy specimens from NSF patients (for
confirmatory purposes)

Differentiation of mononuclear cells into
collagen-secreting cells, with increased expression of
iron metabolism proteins, angiogenic and
osteoblast-lineage markers; these types of cell were
also present in skin biopsies of NSF patients

Bleavins et al., 2012 [74]

Human dermal fibroblasts and epidermal
keratinocytes isolated from neonatal foreskin
exposed to Gd (III) salts, Magnevist®

(gadopentetic acid), MultiHance® (gadobenic
acid), Omniscan™ (gadodiamide), or
non-clinical gadodiamide

Gd (III) salts attached to fibroblasts surface;
proliferation was stimulated at lower concentrations
via MAPK and PI3K signaling pathways, while
cytotoxicity was seen at higher levels; GBCAs, but
not the salts, also showed proliferative potential in
fibroblasts under low-Ca2+ conditions, more evident
for gadodiamide; no effects were observed
in keratinocytes

Pereira et al., 2012 [75]
Male Wistar rats without or with renal failure
(5/6 nephrectomy), exposed to a single dose
of Dotarem® (gadoteric acid)

Rats with renal failure showed a decreased renal
function (↓GFR, ↑proteinuria, decrease in total iron
binding capacity, increased serum ferritin,
transferrin oversaturation, and increased plasmatic
TBARS); treatment with the antioxidant
N-acetylcysteine ameliorated these effects; rats with
normal renal function showed no effects when
treated with gadoteric acid compared to controls
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Wagner et al., 2012 [76]
Female Fischer 344 rats with renal failure
(5/6 nephrectomy) treated with repeated
administrations of gadodiamide for 4 weeks

Skin presenting bone marrow-derived cells, with
increased expression of αSMA, and with profibrotic
(↑fibronectin, collagen IV, cathepsin L), and
pro-oxidant phenotypes (↑superoxide, NOX4)

Wermuth & Jimenez
2012 [77]

Human embryonic kidney cells (HEK293 cell
line) expressing one of different human TLRs
or NLRs, and macrophages differentiated
from human peripheral blood mononuclear
cells exposed to Dotarem® (gadoteric acid),
MultiHance® (gadobenic acid), ProHance®

(gadoteridol), OptiMARK®

(gadoversetamide), Omniscan™
(gadodiamide), non-clinical gadodiamide or
gadopentetic acid, or non-chelated Gd (III)

Non-chelated Gd (III), gadoteric and gadobenic acid,
as well as both gadodiamide formulations, induced
NFκB activation via TLR4 and 7, more pronounced
with the latter two; this stimulation of TLR resulted
in a strong profibrotic/pro-inflammatory response in
macrophages treated with Omniscan™ and
gadodiamide (↑CXCL10, 11, and 12, CCL2 8 and 9,
IL-4 and -6, TGFβ, and VEGF)

Angeli et al., 2011 [78] Aortic rings of Wistar rats incubated with
GdCl3

Blockade of ADP and ATP hydrolysis through
stimulation of angiotensin II receptor type 1

Feng et al., 2011 [79]
Primary cultures of cortical astrocytes,
isolated from neonatal Sprague Dawley rats,
treated with GdCl3

Ca2+ influx; no effects on cytotoxicity, potentially
due to the activation of unfolded protein responses,
as a consequence of triggered ER stress

Ghio et al., 2011 [80]

Human alveolar macrophages, human
monocytes (THP-1 cell line), primary and
immortalized (BEAS-2B cell line) human
normal bronchial epithelial cells exposed to
GdCl3 or Omniscan™ (gadodiamide)

A concentration-dependent uptake of Gd (III) was
observed for all cell types, for both GdCl3 and
gadodiamide; co-exposure of cells to GdCl3 and
ferric ammonium citrate increased iron levels
compared to incubation with each compound alone;
in BEAS-2B cells, GdCl3 triggered increased
production of IL-18, and co-exposure with ferric
ammonium citrate led to increased ferritin levels

Long et al., 2011 [81] Human adenocarcinoma cells (HeLa cell line)
exposed to GdCl3

Cell proliferation and increased lipid and amino acid
metabolisms at low concentrations, while promoting
cell death and disrupting the metabolism of lipids,
amino acids, and carbohydrates at
higher concentrations

MacNeil et al., 2011 [82]
Primary human keratinocytes and dermal
fibroblasts exposed to Gd-EDTA, Omniscan™
(gadodiamide), or Dotarem® (gadoteric acid)

Gd-EDTA and gadodiamide stimulated both
fibroblast and keratinocyte viability at lower
concentrations and induced cell death at higher
levels; they also stimulated collagen production in
fibroblasts, but not in keratinocytes

Okada et al., 2011 [83]

Mouse pre-osteoblastic cells (MC3T3-E1 cell
line), human adipose tissue-derived
mesenchymal stem cells, human
subcutaneous preadipocytes, and human
dermal fibroblasts, exposed to GdCl3

Cell differentiation in all cell types and Ca2+

deposition, leading to abnormal calcification;
downregulation of type I collagen was also observed
in fibroblasts

Wang et al., 2011 [84] Prostate cancer cells (DU145 and PC3 cell
lines) exposed to GdCl3

Inhibition of PC3 cell viability via apoptosis
(↑annexinV), as well as cell migration in both cell lines,
which was mediated by the inactivation of both
ERK1/2 and p38 MAPK pathways; increase in Ca2+

levels; all effects appear to be regulated upstream by
the PTx-sensitive Gi protein signaling pathway;
suppression of cell-induced osteoclast differentiation
via the RANKL/RANK/OPG pathway
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Wiesinger et al., 2011 [85]

Human umbilical vein endothelial cells
(HUVECs) and human dermal fibroblasts
(HSF 1 cells) were exposed to Gadovist®

(gadobutrol), Magnevist® (gadopentetic
acid), MultiHance® (gadobenic acid), or
Omniscan™ (gadodiamide), as well as the
manganese- and the iron-based contrast
agents Teslascan® and Resovist®

Gadodiamide and Teslascan® showed
antiproliferative effect in HUVECs, which was
rapidly compensated; HSF 1 cells showed no effect
on TGFβ levels after exposure to the GBCAs

Xia et al., 2011 [86] Primary cultured rat cortical neurons
exposed to GdCl3

Cytotoxicity in neurons, with increased Ca2+ levels,
through oxidative injury (↑ROS) and ER
stress-related signal transduction

Bhagavathula et al.,
2010 [87]

Human dermal fibroblasts and intact skin in
organ culture exposed to GdCl3

Increased cell proliferation in fibroblasts, possibly
involving MAPK/PI3K signaling pathways;
upregulation of MMP-1 and TIMP-1 in both cells
and skin culture; increased type 1 collagen
deposition in the skin

Del Galdo et al., 2010 [88] Human monocyte-derived macrophages
incubated with Omniscan™ (gadodiamide)

Stimulated macrophage activation, with
NFκB-dependent expression, and increased
chemokines production (↑CCL2 and 8, CXCL10
and 11) and iNOS

Gou et al., 2010 [89] Mouse macrophages (RAW 264.7 cell line)
treated with GdCl3

No effect on macrophage viability; trigger of
profibrotic/pro-inflammatory responses (↑TGFβ1
and IL-6) via the activation of protein kinase C and
ERK1/2 signaling pathways

Li et al., 2010 [90] Mouse embryo fibroblasts (NIH3T3 cell line)
treated with Gd-containing particles

Promoted G1/S cell cycle progression through the
activation of ERK and Akt signaling pathways;
increased levels of serum in media led to the
formation of smaller particles that exert a stronger
effect on cell cycle

Feng et al., 2010 [91] Primary cultures of embryonic cortical
neurons exposed to GdCl3

Cell death by apoptosis (↓MT activity, ∆Ψm and ATP,
↑cytochrome c, and caspase 3), oxidative stress
(↑ROS), and DNA fragmentation

Bhagavathula et al.,
2009 [92]

Human dermal fibroblasts treated with
Omniscan™ (gadodiamide)

Increased production of MMP-1 and TIMP-1 and
increased type I collagen deposition, without
affecting type I procollagen production

Fu et al., 2009 [93] Mouse embryo fibroblasts (NIH-3T3 cell line)
exposed to GdCl3

Increased cell growth, promoting G1/S cell cycle
progression (↑cyclin A, B, and D), which appears to
be mediated by activation of both ERK and PI3K
signaling pathways

Liao et al., 2009 [94] Male Wistar rats treated with a single
dose of GdCl3

Liver damage with disrupted carbohydrate
metabolism (↓glycogen, ↑succinate, lactate, alanine,
and betaine); no histological evidence of kidney
damage, but with changes in renal metabolic profile

Moriconi et al., 2009 [95]
Male Wistar rats and C3H/HeJ
endotoxin-resistant mice injected
intraperitoneally with a single dose of GdCl3

Phagocytosis dysregulated the hepatic iron
metabolism (↑hepcidin, ↓hemojuvelin, and
ferroportin-1); these changes might be mediated by
the locally produced acute-phase-cytokines (↑IL-1β
and -6, TNFα)
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Steger-Hartmann et al.,
2009 [96]

Male Wistar rats treated either once, three, or
eight times with a daily administration of
Omniscan™ (gadodiamide)

A decrease in reticulocyte and an increase in
monocyte counts; a decrease in albumin/globulin
ratio; histological signs of renal damage and dermal
fibrosis; Gd (III) was detectable in the skin, femur,
and liver; trigger a pro-inflammatory response,
which appears to increase vascular permeability
(↑OPN, VEGF, CXCL2, CCL1 and 3, TNFα,
and TIMP-1)

Varani et al., 2009 [97]

Human dermal fibroblasts and human skin
in organ culture, isolated from adult
volunteers, treated with Omniscan™
(gadodiamide), Magnevist® (gadopentetic
acid), MultiHance® (gadobenic acid), or
Prohance® (gadoteridol)

GBCA exposure increased fibroblast proliferation,
accompanied by increased production of MMP-1
and TIMP-1, but not of type I procollagen; similar
effects were observed with gadodiamide exposure
in ex vivo skin

Wermuth et al., 2009 [98]
Human peripheral blood monocytes
incubated with Omniscan™ (gadodiamide),
Gd-DTPA, or GdCl3

The three compounds stimulated a
pro-inflammatory/profibrotic response (↑IL-4, 6,
and 13, interferon γ, TGFβ, VEGF, αSMA, and
type I collagen)

Heinrich et al., 2007 [99]

Pig kidney proximal tubular cells (LLC-PK1
cell line) incubated with Magnevist®

(gadopentetic acid), MultiHance® (gadobenic
acid), Dotarem® (gadoteric acid), or
Omniscan™ (gadodiamide)

All GBCAs induced concentration-dependent cell
death; induction of necrosis and apoptosis was more
evident for gadopentetic and gadobenic acid

Korolenko et al., 2006 [100] Male CBA mice administered with a single
dose of GdCl3

GdCl3 accumulated in liver macrophages lysosomes,
leading to damage and a decrease in
macrophage density

Liu et al., 2003 [101]
Mitochondria isolated from Laca mice liver
and human normal liver cells (7701 cell line)
exposed to lanthanides

Disruption of MT function (↑MT swelling and
membrane fluidity, and ↓∆Ψm); induction of
apoptosis (↑cytochrome c release) with potential
involvement of oxidative stress (↑ROS)

Greisberg et al., 2001 [102]
Cultured bovine chondrocytes, isolated from
articular cartilage, exposed to Omniscan™
(gadodiamide)

Adverse changes in chondrocyte metabolism (↑matrix
production, ↓cellular proliferation, ↑apoptosis)

Yongxing et al., 2000 [103] Human peripheral blood lymphocytes, from
a healthy male adult, exposed to Gd(NO3)3

DNA damage (↑micronuclei frequency, single stranded
DNA breaks and unscheduled DNA synthesis)

Zhang et al., 2000 [104] Single ventricular myocytes, isolated from
hearts of male guineapigs, exposed to GdCl3

Non-voltage dependent inhibitory effect on both
inward and outward ionic current, which appears to
reflect gradual Gd (III) accumulation at the binding
site of the Na+-Ca2+ exchanger protein that carries
the current

Bales et al., 1999 [105] Bovine adrenal chromaffin cells treated
with Gd (III)

Enhancement of the Ca2+ -mediated catecholamine
secretion by inhibiting Ca2+ efflux

Roman et al., 1999 [106]
Primary cultured rat hepatocytes and rat
hepatoma cells (HTC cell line) exposed
to Gd (III)

High inhibition of ATP release in liver cells,
suggesting that Gd (III) might be an effective
inhibitor of ATP-permeable channels

Adding et al., 1998 [107] Male New Zealand white rabbits infused
with GdCl3 for 25 min

Decrease in pulmonary vascular resistance, which
appears to be partly due to inhibition of NO formation

Ferreira et al., 1998 [108]
Liver mitochondria isolated from male
Sprague Dawley rats treated with a single
dose of GdCl3

A reversible decrease in liver O2 consumption,
accompanied by a decline in MT cytochromes c1 and c
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Badger et al., 1997 [109]

Liver microsomes and hepatocytes isolated
from control male and female Sprague
Dawley rats and rats administered with a
single dose of GdCl3

GdCl3 treatment reduced the activity of total hepatic
microsomal cytochrome P450 and aniline
hydroxylase; it also reduced the susceptibility of
hepatocytes to the cytotoxicity induced by CCl4, but
not by CdCl2

Spencer et al., 1997 [110] Male and female Sprague Dawley rats
treated with a single administration of GdCl3

Deposition in capillary beds of the lung and kidney,
and in the liver and spleen, with signs of necrosis in
both organs; phagocytosis by the mononuclear
phagocytic system was also observed

Rai et al., 1996 [111] Rats treated with a single dose of GdCl3
Distribution of Kupfer cells in the liver and changes
in their phenotype towards a more
pro-inflammatory one (↑TNFα, ↓IL-10)

Ruttinger et al., 1996 [112] Male Sprague Dawley rats treated with a
single dose of GdC13

Lower phagocytic activity of Kupfer cells, which
may be related to the increased inflammatory
response (↑TNFα and IL-6)

Mizgerd et al., 1996 [113] Rat alveolar macrophages exposed to GdCl3 Cell death by apoptosis

Laine et al., 1994 [114] Rat atrial preparations, from male Sprague
Dawley rats, incubated with GdCl3

Blocked voltage-gated calcium channels and
inhibited stretch-activated atrial natriuretic peptide
secretion

Mlinar and Enyeart
1993 [115]

Rat and human medullary thyroid carcinoma
cells (6-23 (clone 6) and TT cell lines,
respectively) exposed to trivalent
metal cations

GdCl3 blocked the current through T-type voltage
gated calcium channel by occlusion of the channel
pore, and in a voltage-independent way

ACACA, acetyl-CoA carboxylase alpha; ADP, adenosine diphosphate; Akt, protein kinase B; Apaf-1, apoptotic
peptidase activating factor 1; ATP, adenosine triphosphate; CCL, C-C motif chemokine ligand; CCR2, C-C
chemokine receptor type 2; CPT1A, carnitine palmitoyltransferase 1A; CRP, C-reactive protein; CTGF, connective
tissue growth factor; CXCL, chemokine (C-X-C motif) ligand 1; EDTA, ethylenediaminetetraacetic acid; EGFR,
epidermal growth factor receptor; ER, endoplasmic reticulum; ERK, extracellular-signal-regulated kinase; FAK,
focal adhesion kinase; FcεRI, Fc epsilon Receptor I; GADD153, growth arrest- and DNA damage-inducible gene
153; GBCAs, gadolinium-based contrast agents; GFR, glomerular filtration rate; GRP78, glucose-regulated protein
78; GSH, glutathione; GSSG, glutathione disulfide; IL, interleukin; iNOS, inducible nitric oxide synthase; LC3,
microtubule-associated protein 1A/1B-light chain 3; LDH, lactate dehydrogenase; LPO, lipid peroxidation; MAPK,
mitogen-activated protein kinases; MMP-1, matrix metalloproteinase-1; MT, mitochondrial; NFκB, nuclear factor
kappa B; NOX4, NADPH oxidase 4; NPs, nanoparticles; NRF2, nuclear factor erythroid 2–related factor 2; OPG,
osteoprotegerin; OPN, osteopontin; PI3K, phosphatidylinositol 3-kinase; RANK, receptor activator of nuclear
factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; ROS, reactive oxygen species;
SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive substances; TGFβ, transforming growth factor
beta; TIMP-1, tissue inhibitor matrix metalloproteinase 1; TNFα, tumor necrosis factor alpha; VEGF, vascular
endothelial growth factor; αSMA, smooth muscle alpha-actin; ∆Ψm, mitochondrial membrane potential.

A total of 93 studies were herein reviewed (Table 1), including studies concerning
exposure to non-chelated Gd (III) (n = 54) and/or to GBCAs (n = 51). Sixty-four of these
involved in vitro studies, using either established cell lines, primary cultures, or isolated
tissues exposed to Gd (III) or GBCAs; two studies assessed the cellular mechanisms in
hepatic material isolated from rats administered with Gd (III); 22 studies were conducted
in vivo, using different species of animals; and five studies included both in vitro and
in vivo models. Of note, in 15 of the in vivo studies, the effect of repeated administrations
was evaluated, and animal models of renal failure were used in 6 studies.

According to the gathered data, several signaling pathways have been implicated
in Gd (III) mechanisms of toxicity, such as MAPK/ERK (mitogen-activated protein ki-
nase/extracellular signal-regulated kinase), PI3K/Akt (phosphoinositide-3-kinase/protein
kinase B), and EGFR (epidermal growth factor receptor) signaling [26,54,55,71,84,87,89,90,93],
suggesting that Gd (III) interferes with the transduction of molecules involved in the regulation
of inflammatory processes, and in cell metabolism, proliferation, growth, and survival.
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Upregulation of inflammation, oxidative stress, and apoptosis were highlighted as potential
mechanisms of Gd (III) cytotoxicity [25,30,34,38–40,42,60–62,64,66,70,76,84,86,91,99,101,102,111,113].
It has been reported that exposure to Gd (III) or GBCAs may induce the expression of several profi-
brotic chemokines and cytokines, and alter cell growth [11,41,54,59,68,69,72,77,88,89,95,96,98,112],
initiating and supporting tissue fibrosis, namely renal fibrosis [50,52], as occurs in NSF.
These compounds are also capable of increasing the proliferation and activity of fibrob-
lasts [65,74,82,97], favoring collagen production [72,82,92], of triggering skin fibrosis [53,57],
and inducing the upregulation of biomarkers of fibrosis and inflammation, as observed
in exposed macrophages and fibroblasts [57]. Other inflammatory changes have been high-
lighted, including the alterations in macrophage profile, though the effect on macrophage po-
larization, into M1 phenotype or anti-inflammatory M2 phenotype, is controversial [27,43,69].
Increase in liver M2 cells in aged animals [43], involvement of lysosomes in Gd (III) ac-
cumulation in macrophages and in their proliferation [100], leukocytic infiltration, at the
renal level with tubules atrophy [50], enhancement of neutrophil elastase activity [35], and
alteration in leukocyte count [37,68] were also reported. Exposure to Gd (III) prompted its
phagocytosis by the mononuclear phagocytic system [110]. According to Wang et al. [56],
ongoing inflammation seems to facilitate the retention of Gd (III) in the brain tissue.

GBCAs and Gd (III) were seen to promote the production of reactive oxygen species
(ROS), nitrate/nitrite, and prostaglandin E2; increase thiobarbituric acid reactive substances
(TBARS) levels; and inhibit nitric oxide formation [42,61,62,75,91,107]. Increased levels of
ROS were identified as the initiating event of Gd (III)-induced apoptosis [101]. Besides lipid
peroxidation and ROS production, Gd (III) prompted the formation of autophagic vesicles,
also revealing apoptotic and necrotic potential [42,110], pointing towards a multitude of
cell death pathways being activated. Indeed, a decrease in cell viability, an increase in cell
death through apoptosis, and autophagic activation have been associated with Gd (III)
toxicity [10,30,34,40,46–48,51,58,60,64,70,99,113]. Mitochondrial dysfunction [38,42,51,91,108,109]
and suppressing mitochondria membrane potential [62,101] were also described. Besides
cytotoxic, genotoxic potential has also been attributed to Gd (III) exposure [28,45,62], and
DNA cleavage of peripheral blood lymphocytes was reported [70,103].

Gd (III) was shown to interfere with calcium homeostasis as well: competition of Gd
(III) with calcium, needed for cellular processes, was highlighted as a potential mechanism
of cytotoxicity [49,58,89,105,114,115]. Promotion of calcium influx was also reported [79],
along with inhibition of mitochondrial calcium-activated F1FO-ATPase and desensitization
of the permeability transition pore to calcium by binding to F1 [32], which is also in line
with the reported mitochondrial dysfunction. Gd (III) may block calcium transport in
tissues with a lower excretion rate, increasing toxicity; it may inhibit some enzymes that
are activated by calcium, interfering with the reticuloendothelial system, as well as with
other calcium-dependent biological processes [33,36]. It can, also, disturb physiological
processes, like contraction of smooth, skeletal, and cardiac muscles; transmission of nervous
influx; and blood coagulation [116]. Furthermore, cell culture studies have shown that
Gd (III) may lead to abnormal calcification of several types of cultured cells, inducing
calcium deposition [83]. NSF may be, at least in part, a consequence of this alteration in the
calcification process, which promotes hardening of the skin and fibrotic changes in other
tissues and organs.

Other plausible mechanisms underlying Gd (III) toxicity include blockage of adeno-
sine diphosphate and adenosine triphosphate (ATP) hydrolysis through stimulation of
angiotensin II AT1 receptors [78]; inhibition of ATP-permeable channels [106]; interference
with the epithelial Na+-channel’s activity [63]; downregulation of RhoA, mTORC1, and
mTORC2 proteins [31]; and inhibition on both inward and outward ionic current through
Gd (III) accumulation at the binding site of the Na+-Ca2+ exchanger protein that carries
the current [104]. It may also interfere with the mobilization of iron [29,67], as it has
been associated with total iron-binding capacity (TIBC) decrease [75], and to increases in
serum iron, ferritin [41,75,80], and transferrin saturation [75]. It also has an effect on the
differentiation of mononuclear cells into ferroportin-expressing fibrocytic cells [67] and the
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differentiation of mononuclear cells into collagen-secreting cells, with increased expres-
sion of iron metabolism proteins and of angiogenic and osteoblast-lineage markers [73].
Iron involvement in Gd (III) toxicity is in line with the transmetallation theory, by which
endogenous metals, like iron, zinc, copper, magnesium, or calcium, attract the ligand, re-
placing gadolinium with the release of free Gd (III), which may deposit in different tissues.
Finally, metabolic dysfunction, affecting lipid metabolism [38,52], and glycolytic and redox
metabolic pathways were also highlighted [81]. Tubulin was pointed to as a potential Gd-
binging protein, at least in the NIH-3T3 cells (mouse embryonic fibroblasts); this binding
might inhibit the assembling of tubulin or depolymerize microtubules in cells [44].

The pathophysiology of NSF remains poorly clarified and appears to be independent
of sex, race, or age [9]. The dissociation of Gd (III) from Gd-chelates, which has been high-
lighted as the primary etiology, is more likely to occur in patients with renal dysfunction,
who have a reduced excretion rate, allowing a longer retention that facilitates in vivo ion
dissociation, when compared to those with normal renal function.

Few studies using animal models of renal failure have addressed the impact of kidney
disease in the toxicity of GBCAs [11,35,57,67,75,76]. Nonetheless, they suggested that, in the
case of renal disease, GBCAs decreased renal function [75], triggered skin fibrosis [11,57],
increased the number of fibrocytes (related to the oxidative stress environment) [76],
enhanced the differentiation of mononuclear cells into ferroportin-expressing fibrocys-
tic cells [67], produced renal tube vacuolization [11], and caused disturbances in iron
metabolism and TBARS values [75], as well as increased neutrophil count and neutrophil
elastase activity [35].

Accumulation of Gd (III) in the kidney, as well as in other organs, has also been
described in individuals without renal dysfunction [24], particularly in individuals sub-
mitted to repeated administrations of GBCAs [24]. According to Roberts et al., in subjects
with normal renal function, exposure to large cumulative doses of GBCAs can lead to the
deposition of Gd (III) in the skin and brain [117]. The observation of renal damage and
tissue accumulation of Gd (III) after GBCA exposure, in subjects without previous renal
disease, suggests the involvement of other nephrotoxic mechanisms, beyond the decrease
in Gd (III) elimination, due to impaired renal function.

Cell culture studies using Gd (III)-exposed HK-2 cells (human proximal tubular cell
line) reported increased oxidative stress, mitochondrial dysfunction, cell death by apoptosis,
switching to necrosis at higher Gd (III) levels, and autophagic activation. Disturbance of
the lipid metabolism was also observed, with intracellular accumulation of lipid droplets
and upregulation of genes related to both lipogenesis and lipolysis; moreover, increased
expression of the modulators of various signaling pathways involved in the development
and progression of renal disease, including inflammation, hypoxia, and fibrosis, were also
detected, even at subtoxic concentrations [38].

3. Concerns about the Use of GBCAs

The ability of Gd (III) to be retained in body tissues following its detachment from
linear GBCAs led the European Medicines Agency (EMA) to recommend a restriction in
their use [118]. Some linear structure contrast agents, namely gadodiamide and gadoverse-
tamide, were suspended. According to the EMA, the use of gadoxetic and gadobenic acid
should be restricted to liver MRIs, as they undergo biliary excretion, meeting an important
diagnostic need; gadopentetic acid should be restricted to intra-articular administration for
MRI of the joints, since the dose necessary for this exam is very low. Moreover, the EMA
recommended the use of agents with a macrocyclic molecular structure (such as gadoteric
acid, gadobutrol, and gadoteridol), at the lowest dose necessary for diagnosis, and only if
this is not possible without resorting to contrast agents.

Although no restrictions were made for the use of macrocyclic GBCAs, a few human
and animal studies have already demonstrated that their use leads to Gd (III) retention in
body tissues [119], which was also reported in patients with normal renal function [120].
Following the administration of macrocyclic GBCAs in rats, organ tissue (e.g., brain and
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renal, hepatic, and splenic tissues) deposition was observed [121]. In adults and children,
after multiple administrations of macrocyclic GBCAs, an increase in signal intensity on un-
enhanced T1-weighted magnetic resonance in the brain was detected [122–125], suggesting
Gd (III) retention at this organ. Ex vivo analysis of brain and bone tissues from patients
administered with the macrocyclic GBCAs, gadobutrol or gadoteridol, showed Gd (III)
deposition [120]. The development of NSF, following the use of macrocyclic GBCAs, has
also been reported, although data is not always consensual [126].

The mechanistic studies presented in Table 1 suggest that some macrocyclic GBCAs
appear to be more stable, as expected, with lower propensity to release Gd (III) [37], and
with safer profiles when compared to linear GBCAs [33,37,60,61,63,77,82,85].

Nevertheless, it was reported that both linear and macrocyclic GBCAs stimulated the
expression of multiple type I interferon-regulated genes and of numerous chemokines,
cytokines, and growth factors in normal human blood monocytes [98]; in addition, super-
natants recovered from monocyte cell cultures exposed to both types of GBCAs stimulated
the expression, in normal dermal fibroblasts, of types I and III collagen, fibronectin, and
α-smooth muscle actin [72]. Although gadodiamide, a linear GBCA, led to greater skin
fibrosis and dermal cellularity than the macrocyclic gadoteridol, both led to renal proximal
tubule vacuolization and increased fibronectin accumulation [11]. In addition, kidneys
showed a significantly higher Gd (III) content after administration of gadodiamide and of
the macrocyclic gadobutrol, as compared to gadobenate dimeglumine administration [127].

Repeated exposure to the macrocyclic GBCAs gadoteric acid or gadobutrol caused
elevation of oxidative stress and inflammation in the brain [39]; although neurotoxicity was
more prominent for linear GBCAs, both linear and macrocyclic GBCAs triggered neuronal
cell death, through activation of apoptosis [34].

In rat testis, gadoteric acid and gadodiamide induced apoptosis in the Leydig cells,
increased serum calcium levels, and reduced testosterone levels [58]. These GBCAs were
also able to trigger hepatocellular necrosis and apoptosis, causing liver damage [10].

It should be taken in consideration that different profiles have been reported for
macrocyclic GBCAs; for instance, gadobutrol appears to easily release Gd (III), while
gadoterate meglumine showed the best performance concerning the complex stability [49];
gadoteric acid neurotoxic potential was found to be higher than that of gadobutrol [39].
It is important to highlight that each GBCA has its own properties and its own behavior
regarding in vivo retention or deposition. The results reported for one GBCA cannot
be extrapolated for all GBCAs [128]. For instance, gadoteric acid undergoes a much
faster residual excretion from the body than linear GBCAs [129]. Gadoteridol was found
to be eliminated more rapidly from rat cerebellum, cerebrum, and skin, compared to
gadoteric acid and to gadobutrol, in the first 5 weeks after repeated administration of these
macrocyclic GBCAs, resulting in lower levels of retained Gd (III) in these tissues [130].
The faster clearance of gadoteridol has been attributed to its lower viscosity, molecular
weight, and osmolality [131]. Even among macrocyclic GBCAs, there are differences in
their clearance and in the amount of Gd (III) retention [130].

The concerns regarding GBCA safety are driving research to find other solutions,
with better safety and pharmacokinetic profiles, improving their performance and/or
reducing the administered dose; these novel agents may include macro- and supramolecular
multimeric Gd (III) complexes (dendrimers, polymers, carbon nanostructures, micelles, and
liposomes) [132]. The encapsulation of Gd (III) into nanoparticulates is another approach
considered to overcome the poor selective tissue labeling and localization associated with
GBCAs [133]. Smart radiotherapy biomaterials loaded with Gd-based nanoparticles were
also investigated for use in MRI scans, revealing a great potential [134]. The interest of
liposomal formulations application in MRI has been increasing [135]. For instance, the use
of nanoliposomal Gd (III) did not present adverse effects on human-derived hepatocyte-
like HepaRG cells and macrophages, although in vitro studies are needed to evaluate
its safety [136].
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Another approach to reduce GBCAs toxicity is the association with antioxidant or
metal chelation agents. A study, in rats with renal failure (5/6 nephrectomy), exposed
to a single dose of gadoteric acid, showed that the effects in renal function improved by
treatment with the antioxidant N-acetylcysteine [75]. Renal failure (5/6 nephrectomy) mice
exposed repeatedly to gadodiamide developed NSF, infiltration of ferroportin-expressing
fibrocyte-like cells, and iron accumulation in the skin; these effects were less pronounced in
the group treated with gadodiamide plus deferiprone [67], a metal chelating agent used in
clinical practice to treat iron overload, able to avoid Gd (III) tissue deposition. In accordance,
the addition to gadodiamide of the chelating agent DTPA (diethylenetriaminepentaacetic
acid) reduced transmetallation of this GBCA [137], suggesting that the use of metal chelates
may help to reduce, possibly even eliminate, Gd (III) retention by tissues.

4. Final Considerations

Considering the usefulness of contrast agents, the lack of safer alternatives to GBCAs
and the higher prevalence of renal complication in GBCA-exposed patients, especially in
patients with renal insufficiency when the incidence of chronic kidney disease is increasing
worldwide, the studies on the molecular and cellular mechanisms underlying Gd (III)
cytotoxicity for each GBCA, as well as their pharmacological effects, are warranted.

This review provides an overview of the available evidence regarding the toxicity
mechanisms of Gd (III) and GBCAs determined using in vitro and in vivo models, provid-
ing scientific grounds for the development of counteracting therapeutic measures.

It is clear that, compared to GBCAs with macrocyclic structures, the linear GBCAs
are more unstable and, thereby, have shown higher Gd (III) retention and cytotoxicity in
the organs.

Cell cultures with macrophages and renal and endothelial cells demonstrate that GBCA
toxicity seems to involve pro-inflammatory and pro-fibrotic mechanisms. Despite several
studies involving cell cultures, fewer have tackled in vivo evaluation using animal models,
particularly addressing renal function. Current available data indicate that single exposure
to macrocyclic GBCAs seems safe in animals with normal renal function. However, the
toxicity at long-term Gd (III) retention deserves more investigation, both in cases with
normal and decreased renal function.

In patients with moderate/severe renal disease, GBCA exposure may further com-
promise renal function, but the effect in preexisting mild kidney disease is not so clear.
Although there are studies reporting nephrotoxicity and impaired renal function associated
with repeated administrations of GBCAs, the frequency of exposure used in most research
studies poorly mimics the use of these agents in clinical practice, and some research studies
were carried out in models of advanced stage of renal disease. Also, the use of different
lengths of exposure to GBCAs makes the interpretation and comparison between studies
difficult. The effect of repeated administrations in mild kidney disease using standardized
exposures to contrast agents deserves further study. Finally, considering the increasing
prevalence of chronic kidney disease worldwide and that most of the complications fol-
lowing GBCA exposure are associated with renal dysfunction, the mechanisms underlying
GBCA toxicity, especially renal toxicity, need further research studies.
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